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1 Introduction

According to Einstein’s theory of general relativity (GR) the motion of test particles in

a specific background geometry is described by geodesics of space-time. However, for

particles with spin and/or charge deviations are expected due to spin-orbit coupling [1, 2]

or external fields.

Tests of Einstein’s theory are usually limited to special geometries, such as that of

spherical masses (e.g., stars). Some indications exist that deviations from geodesic mo-

tion arises over long distances and time scales, such as for example the famous Pioneer

anomaly [3].

In this paper we propose a modification of Einstein’s equations of motion for particles

in a fixed symmetric space-time, i.e. a space-time admitting one or more Killing vectors.

The main ingredient is a coupling between the constant of motion associated with a Killing

vector and the orbit of the particle, generalizing the concept of spin-orbit coupling. Like

the equation of motion for particles in flat Minkowski space, the action is only invariant

under special co-ordinate transformations defined by the Killing vectors [4]. In the context

of GR we therefore expect our prescription to arise in specific geometries as an effective

action, taking into account special effects from the background geometry.

We apply our formalism to the specific case of Schwarzschild geometry. We introduce

an additional non-minimal coupling between orbital motion and angular momentum and

we make explicit the changes in the effective potential for test particles arising from our

modification. We show how the conventional results are recovered in the limit of vanish-

ing coupling.

An interesting cosmological application arises from applying our new dynamics to

brane models of cosmology. Observing that new physics seems to be required to explain

dark energy as the dominant constituent of our present-day universe, it would be very
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interesting as well as convenient if one can understand the negative pressure behavior - a

signature of dark energy - from a modified brane dynamics. Indeed, the modifications of

dynamics we propose can incorporate this feature in an effective theory, by non-minimal

coupling to conventional gravity.

Taking cue from the braneworld gravity [5] which arises from the embedding of the

4-dimensional world in higher dimension, we follow closely the thin-shell formalism of [6, 7]

where one develops the Friedman equations for cosmology, governed by the induced gravity

on the brane. In our case we use the effective metric emerging from the particle back

reaction. We show that with this extension one can have a universe which interpolates

between the early decelerating and late time accelerating phases. Indeed, it is satisfying

that in the present setup one can visualize the early decelerating and late time accelerating

phases of the universe in a unified framework.

In our analysis of the model we exploit both lagrangian and the hamiltonian frame-

work, using Dirac’s formulation [8] of constrained dynamics. Finally the relevance of

Schwarzschild geometry to a wide class of sources, as implied by Birkhoff’s theorem [9],

motivates our choice of studying this example in more detail.

2 The generalized particle formalism

We propose a generalized action for point particles in a space-time admitting one or more

Killing vectors, taking the form

S =

∫

Ldτ = m

∫

dτ

[

1

2e
gµν ẋ

µẋν − e

2
− λgµνξ

µẋν +
eλ2

2
gµνξ

µξν +
eβλ2

2

]

. (2.1)

Here τ is the worldline evolution parameter, xµ(τ) are the particle co-ordinates, e(τ) is the

worldline einbein introduced to make the action reparametrization invariant [10], and λ(τ)

is an auxiliary worldline scalar variable. Furthermore β is a constant, whilst the metric

gµν(x) and the vector ξµ(x) are functions of the co-ordinates xµ.

The action is invariant under infinitesimal co-ordinate transformations of the form

δxµ = αξµ(x), provided the Lie-derivative of the metric with respect to ξ vanishes:

ξλ∂λgµν + gνλ∂µξ
λ + gµλ∂νξ

λ = 0. (2.2)

This shows that ξµ(x) is the Killing vector associated with the symmetry of the metric. If

the metric admits more than one Killing vector, the action (2.1) can be extended accord-

ingly.

In the following we use the notation,

ẋ2 = gµν ẋ
µẋν , ξ · ẋ = gµνξ

µẋν , ξ2 = gµνξ
µξν . (2.3)

The lagrangian equations of motion for the worldline variables (e, λ) then imply

ẋ2

e2
= −1 + λ2(ξ2 + β); λ =

1

e

ξ · ẋ
ξ2 + β

. (2.4)
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These equations can be used to eliminate e and λ from the action, leading to a classically

equivalent expression

S̃ = −m
∫

dτ

√

−ẋ2 +
(ξ · ẋ)2
ξ2 + β

. (2.5)

It is interesting to note that Eq (2.5) is a somewhat generalized version of the point par-

ticle action derived in [11] in the context of noncommutative Snyder geometry [12]. The

associated canonical momenta are

pµ =
∂S̃

∂ẋµ
=
m

e
gµν

(

ẋν − ξν ξ · ẋ
ξ2 + β

)

, (2.6)

which satisfy the constraints

ξ · p = mβλ, p2 +
1

β
(ξ · p)2 +m2 = 0. (2.7)

In these last equations e and λ are to be interpreted as short-hand notation for the solutions

of eqs. (2.4).

Hamiltonian formulation. To analyze the dynamics implied by the action (2.1), we

follow the hamiltonian analysis of constrained systems as formulated by Dirac [8]. The

canonical momenta are given by

pe =
∂L

∂ė
= 0; pλ =

∂L

∂λ̇
= 0; pµ =

∂L

∂ẋµ
= mgµν

(

1

e
ẋν − λξν

)

. (2.8)

The Hamiltonian follows,

H = peė+ pλλ̇+ pµẋµ − L =
e

2m

[

p2 +m2 + 2mλ(ξ · p) − βm2λ2
]

. (2.9)

We have two primary constraints

ψ1 ≡ pe ≈ 0; ψ2 ≡ pλ ≈ 0, (2.10)

leading to two secondary constraints,

ψ̇2 ≡ ψ3 ≡ e(ξ · p−mβλ) ≈ 0; ψ̇1 ≡ ψ4 ≡ p2 +m2 +
1

β
(ξ · p)2 ≈ 0. (2.11)

Notice that e is not allowed to vanish and hence ψ3 can be replaced by ψ̃3 ≡ ξ · p −
mλβ ≈ 0. Equivalently, we can remove the auxiliary pair e, pe by fixing the gauge e =

1. The remaining three constraints are non-commutating in general and we may obtain

the first-class constraint (related to the generator of the reparametrization invariance) [8]

by appropriate linear combination of ψ2, ψ3, ψ4. However, as ξµ is a Killing vector

one can check that ψ4 commutes with itself as well as with ψ2, ψ3. Hence ψ4 is the

first-class constraint. Indeed, ψ4 coincides with the hamiltonian (2.9) and the lagrangian

constraint (2.7), upon enforcing the remaining second-class constraints ψ2 and ψ̃3. Thus

2mH = ψ4 = p2 +m2 +
1

β
(ξ · p)2 = 0. (2.12)
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Clearly this constraint is a generalization of the normal mass-shell condition p2 +m2 ≈ 0

one is familiar with.

Of course, we must also deal with the second-class constraints by replacing the canon-

ical Poisson brackets by Dirac brackets [8], but in the present case this does not affect the

canonical symplectic structure of the remaining variables. As in the conventional case our

gauge choice implies x0 = t and we can proceed to the standard hamiltonian dynamics.

3 An application to Schwarzschild geometry

We now apply our generalized dynamics to the case of a particle in a Schwarzschild back-

ground, with line element (in natural units c = G = 1)

gµνdx
µdxν = −

(

1 − 2M

r

)

dt2 +
dr2

1 − 2M
r

+ r2dθ2 + r2 sin2 θdφ2. (3.1)

As is well-known, the symmetries of the metric lead to four Killing vectors: one related to

time translation (conservation of energy) and the other three deal with rotational symmetry,

i.e. conservation of angular momentum. Out of these three, one deals with the magnitude

whereas the other two are related to the direction of angular momentum, which means

that the particle will move in a plane. Let us choose this plane to be the equatorial plane

z = 0, or θ = π
2 . Then we can reduce the above metric on the equatorial plane to

gmndx
mdxn = −

(

1 − 2M

r

)

dt2 +
dr2

1 − 2M
r

+ r2dφ2 (3.2)

The Killing vectors associated with time translations and with rotations in the equatorial

plane carry over to the reduced metric. In particular, in this frame the Killing vector

associated with angular momentum is ξµ
(φ) = (0, 0, 1). Incorporating this Killing vector

into our general action (2.1), we have

S =

∫

Ldτ = m

∫

[

1

2e

(

−
(

1− 2M

r

)

ṫ2 +
ṙ2

1 − 2M
r

+ r2φ̇2

)

− e

2
−λr2φ̇+

eλ2

2

(

r2 +β
)

]

dτ.

(3.3)

The canonical momenta turn out to be

pe =
∂L

∂ė
= 0; pλ =

∂L

∂λ̇
= 0, (3.4)

pr =
∂L

∂ṙ
=

mṙ

e
(

1 − 2M
r

) ; pt =
∂L

∂ṫ
= −mṫ

e

(

1 − 2M

r

)

,

pφ =
∂L

∂φ̇
=
m

e
r2φ̇−mλr2.

The Hamiltonian is

H = peė+ pλλ̇+ pr ṙ + ptṫ+ pφφ̇− L

=
e

2m

[

m2 − p2
t

1 − 2M
r

+

(

1 − 2M

r

)

p2
r +

p2
φ

r2
+ 2mλpφ − βm2λ2

]

. (3.5)
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Performing the same constraint analysis as before whilst fixing the gauge e = 1, we find

the modified mass-shell constraint and the relation,

2mH = m2 − p2
t

1 − 2M
r

+

(

1 − 2M

r

)

p2
r +

(

1

r2
+

1

β

)

p2
φ = 0; pφ = mβλ. (3.6)

Consequently the Hamiltonian equations of motion give the two conserved quantities,

ṗφ = {pφ,H} = 0, (3.7)

ṗt = {pt,H} = 0. (3.8)

So we have pφ = l and pt = E, where l and E are two different constants. It is worth men-

tioning here that l and E are nothing but the angular momentum and energy respectively,

for the particle moving in Schwarzschild background, but now depending on the parameter

β as well. In the large β limit the standard results are regained.

This is the Hamiltonian way of reproducing the property that for any Killing vector ξµ

ξ · p = c, (3.9)

where c is time independent. For the Killing vector shown before,

ξ(φ) · p = pφ = l = mβλ, (3.10)

where l is a constant and the last equality follows from the constraint. From the time-like

Killing vector: ξµ
(t) = (1, 0, 0) we obtain energy, the other constant of motion,

ξ(t) · p = pt = E. (3.11)

These are just the same quantities we have obtained previously by using the Dirac brackets.

Thus, those constants are nothing but the angular momentum and energy in the generalized

particle dynamics, respectively.

4 Analysis and interpretation of the effective potential

By substitution of the radial momentum (3.4) and the constants of motion (3.11) and (3.10)

into the mass-shell condition (3.6) we find an expression for the radial velocity:

ṙ2 +
2

m
Veff(r) = ε2, (4.1)

with ε = E/m and

2mVeff =

(

1 − 2M

r

)(

m2 +
l2

β
+
l2

r2

)

. (4.2)

In the limit β → ∞ this reduces to the standard effective potential for particles in a

Schwarzschild background.
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Figure 1. Plot for the variation of the effective potential with r for l = 100 with different values

of β

Following standard practice, we shall now analyze the effective potential in order to

extract information about the particle dynamics. Introducing an l-dependent effective mass

m̃2 = m2 +
l2

β
, (4.3)

we can rewrite Veff in the form,

2mVeff =

(

1 − 2M

r

)[

m̃2 +
l2

r2

]

. (4.4)

The effect of different values of β on the dynamics of a particle with mass m can be seen

in figure 1, where we plot V (r) vs. r for different β at a fixed l = 100. In this figure the

normal line corresponds to β = 10 whereas the dotted, thick and dashed lines represent

the values β = 50, 105,−50 respectively. Also, we have taken M = 1, m = 0.1. We now

discuss the various cases in some more detail.

Positive β. The β → ∞ limit, where the conventional particle is recovered, is given by

the β = 105 plot. On the other hand, the potential diverges for a small value of β (indicated

by normal line) so that one cannot have a bound state for a particle in the small β limit.

This happens due to a huge amount of the binding energy required from the additional

amount of mass term given by l2/β. In order to have a stable orbit for the particle, the

effective potential V (r) should have a minimum. so we must have

dV

dr
= 0. (4.5)

The above relation gives us a quadratic equation to solve and the equation is the following:

Mm̃2r2 − l2r + 3Ml2 = 0. (4.6)
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The two solutions of the above equation are given by:

r± =
l2 ±

√

l4 − 12M2l2(m2 + l2

β )

2M(m2 + l2

β )
. (4.7)

One of these two solutions represents a maximum, i.e. an unstable orbit and the other

represents a minimum, i.e. a stable orbit. The stability condition turns out to be,

l2 ≥ 12M2m2β

β − 12M2
. (4.8)

Negative β. However, strikingly new behavior appears for negative β with l2 < |β|m2.

This is seen in the figure 1 for β = −50. The effective potential changes sign after some

value of r, indicating a change in the behavior of the particle trajectory at some point.

The cosmological implications of this sign-flip will be discussed in the next section.

5 Cosmological implications of negative β

So far we have analyzed the significance of the dynamics of the generalized particle. In this

section we shall point out a crucial implication of the scenario in the cosmological context.

From embedding geometry using the Gauss-Codazzi equation [14] it can be shown that

a (D − 1)-dimensional surface representing a cosmological Friedmann-Robertson-Walker

(FRW) metric can be embedded consistently in a D-dimensional black hole spacetime in

such a way that the expansion of the FRW surface is realized by the particle trajectory

along the radial direction in the gravitational field of the black hole [5–7, 15, 16]. In the

present article, the particle motion represents a 3-dimensional FRW metric and the effective

potential contains essential information for the evolution of the embedded cosmological

surface. Below we shall show how this can be realized, followed by a discussion of its

cosmological implications.

Let us take a careful look at the expression for the effective potential (4.4). It contains

additional terms arising from β in the generalized particle approach. It is straightforward

to verify that the scenario is identical to the motion of a point mass in the field of a static,

spherically symmetric metric

ds24 = −F (r)dt2 +
dr2

F (r)
+ r2dΩ2

2 (5.1)

where

dΩ2
2 =

dσ2

1 − kσ2
+ σ2dφ2, (5.2)

provided the metric function F (r) is chosen as

F (r) =

(

1 − 2M

r

)(

m̃2r2 + l2

m2r2 + l2

)

(5.3)

The geodesic equations associated with this metric (5.1) reproduce precisely the same

effective potential as that in eq. (4.4). How the above form of the metric can be derived
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directly from solving the Einstein equations with some specific source is presently an open

problem. The reader may however note that this effective metric falls in the class of several

complicated spherically symmetric metrics available in the literature [17] (Some more exotic

metrics are listed in [18]); here the only point is that this effective metric arises from the

generalized particle dynamics. In reality, of course, the background spacetime still remains

of the Schwarzschild type.

Our intention is, rather, to embed a 3-dimensional FRW metric

ds23 = −dτ2 + a2(τ)dΩ2
2 (5.4)

(where dΩ2
2 is the two-space representing the flat, open or closed spaces) into the spacetime

given by eq. (5.1). With the effective metric function (5.3), and identifying the scale factor

with the radial trajectory so that the expansion of the cosmological universe is realized

by the radial motion of the particle, the tangents (4-velocity) and normals to the surface

satisfying the orthonormality and normalization conditions are given by

uµ ≡
(

√

F (a) + ȧ2

F (a)
, ȧ, 0, 0

)

nµ ≡
(

− ȧ

F (a)
, −

√

F (a) + ȧ2, 0, 0

)

(5.5)

Here, and throughout the rest of the discussion, we identify r(τ) with the scale factor a(τ).

Further, the extrinsic curvature turns out to be

Kij =

√

F (a) + ȧ2

a
g̃ij ; Kττ =

d

da

(

√

F (a) + ȧ2
)

(5.6)

where g̃µν is the induced metric of the 3-dimensional FRW surface.

The junction conditions, along with Z2-symmetry, relates the extrinsic curvature to

the effective surface stress-energy tensor Sµν by

Kµν = −8πG

(

Sµν − 1

3
Sg̃µν

)

(5.7)

With the extrinsic curvature (5.6), the square of the above equation, immediately leads to

(

ȧ

a

)2

= −F (a)

a2
+

8πG

3
ρ (5.8)

where ρ is the effective surface density that arises from matter and the surface tension.

Written explicitly in terms of the metric function (5.3), we have the Friedmann equation

on the cosmological surface

(

ȧ

a

)2

=
8πG

3
ρ− k

a2
+

2M

a3
− l2

β

(

1 − 2M/a

l2 +m2a2

)

(5.9)

The effective matter conservation equation on the surface holds good. Consequently, we

arrive at the following Raychaudhuri equation for expansion

ä

a
= −4πG

3
(ρ+ 3p) − M

a3
+ T (β), (5.10)

– 8 –
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where the β-dependent terms are

T (β) = − l2

β(l2 +m2a2)2

[

l2 − Ml2

a
+Mm2a

]

. (5.11)

The evolution of the 3-dimensional cosmological universe is governed by the above three

equations. Eq. (5.10) needs special attention in this regard. The M/a3 term is a radiation-

like effect (note the cosmology is now 3-dimensional) from the Weyl tensor of the black

hole and hence is negligible for late time evolution. This is analogous to the dark radiation

in a braneworld context [5]. The terms in T (β), however, are not so trivial, and in fact

these terms give rise to the most important physical conclusion.

Indeed, the above correction to the evolution equations (5.10) of the embedded cos-

mological surface is quite significant when the β parameter takes negative value. With

a negative β, the term outside the square bracket is positive definite. Consequently, this

correction term T (β) has a positive contribution to the expansion equation (5.10) for the

relevant region a > 2M (the particle trajectory is outside the black hole horizon), thereby

resulting in an effective negative pressure which becomes significant at late time. This term

essentially leads to late time accelerating phase. This is clearly demonstrated in figure 1.

The model is thus capable of explaining a transition from the decelerating to accelerating

phases of the universe with an effective negative pressure arising from a negative β. Thus

the framework has the potentiality to provide a source for dark energy.

Our claim can further be established from the analysis of deceleration parameter which

is one of the major observable quantities for the present universe. Considering the terms

containing β as the driving force for the acceleration of the universe (which implies that

this is the dominant contribution to cosmic density at late time) and neglecting the effect

of the matter sector, the deceleration parameter turns out to be

q = − ä/a

(ȧ/a)2
= − l2

l2 +m2a2
− M

a− 2M
. (5.12)

This clearly reveals that the deceleration parameter is negative for the cosmologically

relevant region a > 2M , confirming an accelerated expansion at late time. This behavior is

further transparent from figure 2 which shows the variation of the deceleration parameter

q with Hubble parameter H = ȧ/a for the representative values of the constants.

The behavior for the scale factor can also be analyzed to some extent with the above

considerations of β-dominance. In the large l and small m limit, an approximate solution

for the Friedmann equations can be obtained as

a(t) ≈M +
1

2

[

et/
√
−β −M2e−t/

√
−β
]

(5.13)

As already mentioned, β is negative here. In the above equation, the first term is nothing

but a scaling and with M = 1 the second term reduces to sinh(t/
√
−β), which interpolates

between a decelerating phase (matter-dominated) at early time and an accelerated expan-

sion at late time. Thus our model behaves pretty close to ΛCDM, with the inverse of the

β parameter playing the role of the cosmological constant. Because of this identification,

– 9 –
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Figure 2. Variation of the deceleration parameter q with Hubble parameterH for l = 100, β = −50,

M = 1, m = 0.1

it is worthwhile to emphasize that negative β is consistent with a positive value for Λ that

is favored observationally. This makes the scenario further interesting from observational

ground since now one can calculate the other observable parameters and compare them

with highly accurate observational data.

From the particle dynamics point of view, an effective negative pressure from a negative

β is, indeed, what is expected. This will be transparent from the expression of the effective

mass given in the last section by m̃2 = m2 + l2

β . Clearly, a negative value for the β

parameter will result in a reduced effective mass for the particle as compared to its physical

mass (m̃2 < m2). This apparent loss in mass will make the particle feel as if it is being

acted upon by a repulsive force, which is concretized by an effective negative pressure in

the Friedmann equations (5.9) and (5.10), thereby leading to a late-accelerating behavior

for the cosmological surface from our analysis. The sign-flip in the effective potential in

figure 1 for negative β shows this behavior.

This gives a major cosmological implication of the paradigm. One can readily see that

the computations are literally the same for a 4-dimensional cosmological metric embedded

in a 5-dimensional black hole spacetime. Thus, there is absolutely no problem in applying

the model to real-life cosmological analysis. A thorough investigation in this direction will

be reported in future.

6 Summary and outlook

In this article we have developed a generalized framework for dynamics of a particle moving

in a fixed background geometry, based on a reparametrization-invariant action containing

the information of the symmetry properties of the spacetime. In our analysis, we have

considered hamiltonian as well as lagrangian formalisms and have shown that both of

them lead to same results, thereby confirming the consistency of the theory.

Applying our framework to the case of Schwarzschild geometry, we have further ana-

lyzed the effective potential as usual in GR. Our analysis reveals some distinct features of

the model. First, the physical mass of the particle is replaced by a more relevant effective

mass which is a sum-total of the physical mass and an additional mass-like effect arising

– 10 –
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from the term β introduced in the theory. Secondly, using rigorous analysis with different

plots for the variation of the effective potential with radial distance, we find that among a

spectrum of possibilities for different value of the β parameter, the usual particle dynamics

for Schwarzschild spacetime is recovered only for the β → ∞ limit. Further, the effective

mass results in an additional binding energy for the particle so that a stable orbit is now

obtained for a larger value of the angular momentum. A last and significant outcome of

our analysis is that we uncover a source for negative pressure analogous to dark energy for

a cosmological metric moving along the particle trajectory.

Since throughout the effective potential analysis, the physical mass is replaced by the

effective mass the quantitative estimations for a massive particle are going to be different

from the GR counterparts. One can estimate the quantities and subject them to exper-

imental verifications. Also, the action we choose is one of the simplest extension of the

single-particle action that preserves reparametrization-invariance. More general actions

can lead to more dramatic results. For example, a suitable choice of the action may lead to

a noncommutative structure which may further be utilized to verify whether the spacetime

becomes noncommutative in the vicinity of the black hole horizon.

A thorough investigation of the evolution of the universe providing a late-accelerating

phase with the modified Friedmann equations is one of the major open issues. At the very

first point, it is interesting to look for any analytical or numerical solution for the scale

factor from equations (5.9) and (5.10), which will explicitly show the late-accelerating

behavior. Secondly, one can calculate different observable quantities [19], such as the de-

celeration parameter q, the Hubble parameter H(z), age of the universe t0, luminosity

distance dL, statefinder parameters {r, s} [20], Om(z) parameter, acceleration probe q̄ [21]

and the other observable quantities as well. The next step is to confront them with obser-

vations. Some of the issues have been discussed to some extent in the present article. We

hope to address some of these issues in the near future.
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